

ELECTRICITY MARKETS, AND THE ROLE OF RENEWABLES & NUCLEAR **Reinhard Haas Energy Economics Group**,

Vienna University of Technology

PRAGUE 6.2.2019

SURVEY

- **1. Introduction: Historical background**
- 2. How prices come about (theory)
- 3. Environmental issues: CO2-prices
- 4. How prices developed in Europe
- 5. Electricity generation costs
- 6. Recent developments of nuclear
- 7. The role of Renewables
- 8. Conclusions

OUR LIFE: PERMANENTLY UNDER

- How to provide access to electricity "optimal" from societies point-of-view?
- What is the optimal political "structure"? Private, price (de-)regulation
- How to bring about a transformation to a sustainable energy system?

The European Commission's main expectation was the belief that "market forces [would] produce a better allocation of resources and greater effectiveness in the supply of services"

Intentions of the EC directive:
 Competitive markets
 Iower electricity prices
 more environmentally benign

1. Introduction: Electricity generation EU-28

Source: EUROSTAT, own estimations

Source: EUROSTAT, own estimations

Discussion: PV vs Nuclear What are the advantages and disadvantages for reducing GHG emissions and heading towards a sustainable energy system?

MWh

LONG-TERM VS SHORT-TERM MARGINAL COSTS

What are marginal costs (MC)?

MC = C'(X) = dC(x)/dX

Marginal costs are the increment of costs due to a generation of one additional unit of kWh

P=MC

Short-term marginal costs (STMC): STMC= Fuel costs + CO2 costs

Long-term marginal costs (LTMC):

LTMC= STMC + Capital costs + O&M costs

3 ENVIRONMENTAL ASPECTS – THE CO2-PRICE

EN

4 HOW PRICES DEVELOPED IN EUROPE EUROPEAN ELECTRICITY SUB-MARKETS

Development of day-ahead electricity prices in Europe per year

WIEN

5 ELECTRICITY GENERATION COSTS ANNUITY METHOD

Investment costs

Electricity generation Conventional 2017

Fossil fuel prices 1999-2017

Generation costs CCGT

Example: Costs of electricity generation from CCGT

....Investment costs = 600 EUR/kW α ... C.R.F. = 0.1 for 15 years and 5% interest rate TFull load hours = 5000/1000 hours per year $C_{O&M}$...Operation & maintenance costs = 20 EUR/kW ...Fuel price (e.g. 25 cents/m³ natural gas) **p**_f Н ...Caloric heat content (e.g. 10 kWh per m³ for gas) ...Efficiency of CCGT plant = 0.58 η C_{CO2} ... Price of CO2: 5 EUR/ton Carbon) f_{CO2}... CO2-factor of fuel (0.2 kg Carbon/kWh)

Example: Costs of electricity generation from CCGT

Investment costs

Electricity from new renewables 2010

Investment costs

Electricity from new renewables 2017

Generation costs

Electricity from new renewables 2010

6. RECENT DEVELOPMENT OF NUCLEAR COSTS

- Olkiluoto-3 (Finland): Construction started in 2004, now expected to be completed 2019 (originally: 2009); 1600 MW
- Flamanville-3 (France): Construction started in 2006, now expected to be completed 2019 (originally: 2011); 1600 MW
- Hinkley point (UK): Construction start expected in 2022, 1600 MW

Construction times

WIEN

Construction times

Impact of construction time on investment costs: Example Olkiluoto

All costs are converted into 2010 figures

Investment cost development Olkiluoto 3 vs Flamanville 3 vs HP

"Total" Cost development Olkiluoto

No insurance costs considered!

"Total" Cost development Flamanville-3

No insurance costs considered

7. THE ROLE OF RENEWABLES

CORE MOTIVATION: Policy targets for an INCREASE of RES-E!

e.g. 2020/20/20/20 targets

Grid parity: PV-costs and household electricity prices

WIEN

Grid parity term

Subsidy still necessary?

Share of own consumption

Promotion of decentralized PV in Czech Republic

- Currently 3rd call for family houses includes:
- PV systems for power: *below 10 kWp,
 * should be connected to the grid
- Systems with and without batteries with utilization of excess electricity for hot water or general own use are subsidized
- Generated power should be used on site of generation at least by 70%

Peer-to-peer

- Markets are in a period of transition towards volatility;
- Nuclear: long lead time, uncertain costs
 → high promises, low fullfilments;
- Renewables: next very interesting phase: after PV-Grid parity!
- More details: Summer school

Example: Costs of electricity generation from CCGT 5000 h/yr:

C = 1.20 + 0.40 + 4.31 + 0.17 = 6.08 cent/kWh

1000 h/yr:

C = 6.0 + 2.0 + 4.31 + 0.17 = 12.48 cent/kWh